Comparison of data assimilation methods based on the classical, ensemble and local Kalman filter by the example of the advection equation and Lorenz system
Authors
-
D.A. Rostilov
-
M.N. Kaurkin
-
R.A. Ibraev
Keywords:
boundary value problems
quasistructured grids
parallelization technologies
data structures
structured arrays
Abstract
When parallelizing the solution of three-dimensional boundary value problems, especially in domains with complex geometry, the сomputational technologies and data structureы are important. The amount of stored information and the computational time depend on them. In this paper we propose the technologies for parallelizing the method of decomposition of the computational domain into subdomains conjugated without overlapping on a quasistructured grid. Parallel grid data structures oriented mainly to work with structured data arrays are developed. An illustrative example clarifying the fundamentals of the proposed approach is discussed.
Section
Section 1. Numerical methods and applications
References
- V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, “Numerical Algorithm for Variational Assimilation of Sea Surface Temperature Data,” Zh. Vychisl. Mat. Mat. Fiz. 48 (8), 1371-1391 (2008) [Comput. Math. Math. Phys. 48 (8), 1293-1312 (2008)].
- D. F. Parrish and J. C. Derber, “The National Meteorological Center’s Spectral Statistical Interpolation Analysis System,” Mon. Wea. Rev. 120 (8), 1747-1763 (1992).
- F. Rabier and Z. Liu, “Variational Data Assimilation: Theory and Overview,” in Proc. ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, UK, September 8-12, 2003 (ECMWF, Reading, 2003), pp. 29-43.
- R. E. Kalman and R. S. Bucy, “New Results in Linear Filtering and Prediction Theory,” J. Basic Eng. 83 (1), 95-108 (1961).
- G. Evensen, “The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation,” Ocean Dyn. 53 (4), 343-367.
- R. N. Miller, “Perspectives on Advanced Data Assimilation in Strongly Nonlinear Systems,” in Data Assimilation (Springer, Berlin, 1994), Vol. 19, pp. 195-215.
- S. J. Julier and J. K. Uhlmann, “A General Method for Approximating Nonlinear Transformations of Probability Distributions,”
http://citeseerx.ist.psu.edu/viewdoc/summary?. Cited November 28, 2018.
- K. P. Belyaev, C. A. S. Tanajura, and N. P. Tuchkova, “Mathematical Foundation, Application, and Comparison of General Data Assimilation Method Based on Diffusion Approximation with Other Data Assimilation Schemes,” Inform. Primen. 6 (4), 84-94 (2012).
- E. G. Klimova, G. A. Platov, and N. V. Kilanova, “Development of Environmental Data Assimilation System Based on the Ensemble Kalman Filter,” Vychisl. Tekhnol. 19 (3), 27-37 (2014).
- M. N. Kaurkin, R. A. Ibrayev, and K. P. Belyaev, “ARGO Data Assimilation into the Ocean Dynamics Model with High Spatial Resolution Using Ensemble Optimal Interpolation (EnOI),” Okeanologiya 56 (6), 852-860 (2016) [Oceanology 56 (6), 774-781 (2016)].
- E. Ott, B. R. Hunt, I. Szunyogh, et al., “Exploiting Local Low Dimensionality of the Atmospheric Dynamics for Efficient Ensemble Kalman Filtering,”
https://arxiv.org/abs/physics/0203058v3 . Cited November 28, 2018.
- E. Ott, B. R. Hunt, I. Szunyogh, et al., “A Local Ensemble Kalman Filter for Atmospheric Data Assimilation,” Tellus 56 (5), 415-428 (2004).
- I. Szunyogh, E. A. Satterfield, J. A. Aravéquia, et al, “The Local Ensemble Transform Kalman Filter and Its Implementation on the NCEP Global Model at the University of Maryland,” in Proc. ECMWF Workshop on Flow Dependent Aspects of Data Assimilation, Reading, UK, June 11-13, 2007 (ECMWF, Reading, 2007), pp. 47-63.
- E. Kalnay, H. Li, T. Miyoshi, et al., “4-D-Var or Ensemble Kalman Filter?,” Tellus A: Dyn. Meteorol. Oceanogr. 59 (5), 758-773 (2007).
- V. M. Ipatova and V. P. Shutyaev, Algorithms and Problems of Data Assimilation for the Models of Atmosphere and Ocean
https://mipt.ru/education/chair/mathematics/upload/99f/algsaasimilation.pdf . Cited November 28, 2018.
- E. N. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmos. Sci. 20, 130-141 (1963).
- G. Evensen, Data Assimilation: The Ensemble Kalman Filter (Springer, Berlin, 2009).
- G. Evensen, “Sequential Data Assimilation with a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics,” J. Geophys. Res. Oceans 99 (1994).
doi 10.1029/94JC00572
- J.-F. Mahfouf and F. Rabier, “The ECMWF Operational Implementation of Four-Dimensional Variational Assimilation. II: Experimental Results with Improved Physics,” Quart. J. Roy. Meteorol. Soc. 126, 1171-1190 (2007).
- M. N. Kaurkin, R. A. Ibrayev, and K. P. Belyaev, “Data Assimilation in the Ocean Circulation Model of High Spatial Resolution Using the Methods of Parallel Programming,” Meteorol. Gidrol., No. 7, 47-57 (2016) [Russ. Meteorol. Hydrol. 41 (7), 479-486 (2016)].
- M. A. Tolstykh, R. A. Ibraev, E. M. Volodin, et al., Models of Global Atmosphere and World Ocean: Algorithms and Supercomputing Technologies (Mosk. Gos. Univ., Moscow, 2013) [in Russian].