Visualization of numerical results obtained for gas-particle flows using Lagrangian approaches to the dispersed phase description


  • K.N. Volkov
  • V.N. Emelyanov
  • I.V. Teterina


computational fluid dynamics
scientific visualization
gas-particle flow


Some issues related to the implementation and physical and mathematical support of computational experiments on the investigation of fluid and gas flows containing Lagrangian coherent vortex structures are considered. Methods and tools designed to visualize vortical flows arising in various practical applications are discussed. Examples of visual representation of solutions of gas dynamics problems computed with Lagrangian approaches to the description of flows of fluid and gas are provided. In addition to traditional approaches to the visualization of vortex flows based on the construction of contours of various flow quantities, the phase trajectories of Lagrangian particles, the Poincare section, and the local Lyapunov exponent method are applied. The Lagrangian approach to the description of two-phase flows is relatively simple, but time-consuming from the computational point of view, because it requires a large number of trajectory calculations of sample particles. Additional computational difficulties come from the need of localization of particles in the control volumes of unstructured mesh and interpolation of flow quantities of gas phase.





Section 1. Numerical methods and applications

Author Biographies

K.N. Volkov

V.N. Emelyanov

I.V. Teterina


  1. K. N. Volkov and V. N. Emel’yanov, Flows of Gas with Particles (Fizmatlit, Moscow, 2008) [in Russian].
  2. K. N. Volkov, V. N. Emel’yanov, I. E. Kapranov, and I. V. Teterina, “Lagrangian Coherent Vortex Structures and Their Numerical Visualization,” Vychisl. Metody Programm. 19, 293-313 (2018).
  3. J. J. van Wijk, “Flow Visualization with Surface Particles,” IEEE Comput. Graph. Appl. 13 (4), 18-24 (1993).
  4. H. W. Shen, G. S. Li, and U. D. Bordoloi, “Interactive Visualization of Three-Dimensional Vector Fields with Flexible Appearance Control,” IEEE Trans. Vis. Comput. Graph. 10 (4), 434-445 (2004).
  5. F. Kuester, R. Bruckschen, B. Hamann, and K. I. Joy, “Visualization of Particle Traces in Virtual Environments,” in Proc. ACM Symp. on Virtual Reality Software and Technology, Baniff, Canada, November 15-17, 2001 (ACM Press, New York, 2001), pp. 151-157.
  6. H. J854nicke and G. Scheuermann, “Measuring Complexity in Lagrangian and Eulerian Flow Descriptions,” Comput. Graph. Forum 29 (6), 1783-1794 (2010).
  7. G. S. Li, X. Tricoche, and C. Hansen, “Physically-based Dye Advection for Flow Visualization,” Comput. Graph. Forum 27 (3), 727-734 (2008).
  8. R. Fuchs, J. Kemmler, B. Schindler, et al., “Toward a Lagrangian Vector Field Topology,” Comput. Graph. Forum 29 (3), 1163-1172 (2010).
  9. X. Yuan and B. Chen, “Illustrating Surfaces in Volume,” in Proc. 6th Joint IEEE/EG Symp. on Visualization, Konstanz, Germany, May 19-21, 2004 (Eurographics Association, Aire-la-Ville, 2004), pp. 9-16.
  10. K. Bürger, P. Kondratieva, J. Krüger, and R. Westermann, “Importance-Driven Particle Techniques for Flow Visualization,” in Proc. IEEE Pacific Visualization Symposium, Kyto, Japan, March 4-7, 2008 (IEEE Press, New York, 2008), pp. 71-78.
  11. K. Liang, P. Monger, and H. Couchman, “Interactive Parallel Visualization of Large Particle Datasets,” Parallel Comput. 31 (2), 243-260 (2005).
  12. C. Jones and K.-L. Ma, “Visualizing Flow Trajectories Using Locality-based Rendering and Warped Curve Plots,” IEEE Trans. Vis. Comput. Graph. 16 (6), 1587-1594 (2010).
  13. F. Sadlo, S. Bachthaler, C. Dachsbacher, and D. Weiskopf, “Space-Time Flow Visualization of Dynamics in 2D Lagrangian Coherent Structures,” in Computer Vision, Imaging and Computer Graphics. Theory and Application (Springer, Berlin, 2013), pp. 145-159.
  14. J. Kruger, P. Kipfer, P. Kondratieva, and P. Westermann, “A Particle System for Interactive Visualization of 3D Flows,” IEEE Trans. Vis. Comput. Graph. 11 (6), 744-756 (2005).
  15. M. Schirski, T. Kuhlen, M. Hopp, et al., “Efficient Visualization of Large Amounts of Particle Trajectories in Virtual Environments Using Virtual Tubelets,” in Proc. ACM SIGGRAPH Int. Conf. on Virtual Reality Continuum and Its Applications in Industry, Singapore, June 16-18, 2004 (ACM Press, New York, 2004), pp. 141-147.
  16. D. Merhof, M. Sonntag, F. Enders, et al., “Hybrid Visualization for White Matter Tracts Using Triangle Strips and Point Sprites,” IEEE Trans. Vis. Comput. Graph. 12 (5), 1181-1188 (2006).
  17. W. D. Bachalo, “Experimental Methods in Multiphase Flows,” Int. J. Multiphase Flow 20 (Suppl. 1), 261-295 (1994).
  18. M. Widhalm, A. Ronzheimer, and J. Meyer, “Lagrangian Particle Tracking on Large Unstructured Three-Dimensional Meshes,” AIAA Paper 2008-472 (2008).
    doi 10.2514/6.2008-472
  19. G. Lu, V. Ly, X. Wang, et al., “A Tool for Visualizing Large-Scale Interactions between Turbulence and Particles in 3D Space through 2D Trajectory Visualization,” in Lecture Notes in Computer Science (Springer, Heidelberg, 2013), Vol. 8034, pp. 48-57.
  20. F. Toschi and E. Bodenschatz, “Lagrangian Properties of Particles in Turbulence,” Annu. Rev. Fluid Mech. 41, 375-404 (2009).
  21. J. Bec, L. Biferale, M. Cencini, et al., “Heavy Particle Concentration in Turbulence at Dissipative and Inertial Scales,” Phys. Rev. Lett. 98 (2007).
    doi 10.1103/PhysRevLett.98.084502
  22. S. W. Coleman and J. C. Vassilicos, “A Unified Sweep-Stick Mechanism to Explain Particle Clustering in Two- and Three-Dimensional Homogeneous, Isotropic Turbulence,” Phys. Fluids 21 (2009)
    doi 10.1063/1.3257638
  23. T. Günther and H. Theisel, “Vortex Cores of Inertial Particles,” IEEE Trans. Vis. Comput. Graph. 20 (12), 2535-2544 (2014).
  24. Y. Chen, J. D. Cohen, and J. Krolik, “Similarity-Guided Streamline Placement with Error Evaluation,” IEEE Trans. Vis. Comput. Graph. 13 (6), 1448-1455 (2007).
  25. L. Li, H.-H. Hsieh, and H.-W. Shen, “Illustrative Streamline Placement and Visualization,” in Proc. IEEE Pacific Visualization Symposium, Kyoto, Japan, March 5-7, 2008 (IEEE Press, New York, 2008), pp. 79-86.
  26. A. I. Kartushinsky, Yu. A. Rudi, S. V. Tisler, et al., “Application of Particle Tracking Velocimetry for Studying the Dispersion of Particles in a Turbulent Gas Flow,” Teplofiz. Vys. Temp. 50 (3), 408-417 (2012) [High Temp. 50 (3), 381-390 (2012)].
  27. L. I. Zaichik and V. M. Alipchenkov, {Statistical Models of Particle Motion in Turbulent Fluid} (Fizmatlit, Moscow, 2007) [in Russian].
  28. H. Homann and J. Bec, “Concentrations of Inertial Particles in the Turbulent Wake of an Immobile Sphere,” Phys. Fluids 27 (2015).
    doi 10.1063/1.4919723
  29. K. N. Volkov, “Finite Difference Schemes for Integrating the Equations for Sample Particle Motion in a Fluid or Gas Flow,” Vychisl. Metody Programm. 5, 1-17 (2004).
  30. V. N. Emelyanov, I. V. Teterina, K. N. Volkov, and A. U. Garkushev, “Pressure Oscillations and Instability of Working Processes in the Combustion Chambers of Solid Rocket Motors,” Acta Astronaut. 135, 161-171 (2017).
  31. K. N. Volkov, “Large Eddy Simulation in a Fully Developed Turbulent Flow in a Channel and Comparison of Subgrid Eddy Viscosity Models,” Zh. Prikl. Mekh. Tekh. Fiz. 47 (3), 31-42 (2006) [J. Appl. Mech. Tech. Phys. 47 (3), 330-339 (2006)].