Artificial boundary conditions for the ILES modeling of plane channel flow using the Cabaret scheme


  • D.G. Asfandiyarov Nuclear Safety Institute (IBRAE) of RAS



plane channel, ILES, Cabaret scheme, artificial boundary conditions


Some results of ILES modeling of the plane channel flow of a viscous incompressible fluid using the Cabaret scheme are discussed. The possibility of modifying the calculation of flow near the wall is considered to determine the average characteristics more accurately. The "artificial" boundary conditions are introduced by using a special eddy viscosity model in the first layer of cells near the wall to correctly account for shear effects. The results of numerical simulation of plane channel flow obtained using the Cabaret scheme with and without artificial boundary conditions are compared in a wide range of Reynolds numbers. It is shown that the introduced modifications in the near-wall layer improve the accuracy of determining the average flow characteristics, especially the second moments. The obtained data are also compared with the results of LES modeling by the pseudospectral method and with the data from direct numerical simulation.

Author Biography

D.G. Asfandiyarov


  1. K. N. Volkov and V. N. Emel’yanov, Large Eddy Simulation in Calculations of Turbulent Flows (Fizmatlit, Moscow, 2008) [in Russian].
  2. U. Schumann, “Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli,” J. Comput. Phys. 18 (4), 376-404 (1975).
  3. E. Léveque, F. Toschi, L. Shao, and J.-P. Bertoglio, “Shear-Improved Smagorinsky Model for Large-Eddy Simulation of Wall-Bounded Turbulent Flows,” J. Fluid Mech. 570, 491-502 (2007).
  4. V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkin, New CFD Algorithms for Multiprocessor Computer Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].
  5. V. Yu. Glotov, A Mathematical Model of Free Turbulence Based on Maximum Principle. Candidate’s Dissertation in Mathematics and Physics (Keldysh Institute of Applied Mathematics, Moscow, 2015).
  6. D. G. Asfandiyarov, B. I. Berezin, and S. A. Finogenov, “Direct Numerical Simulation of a Turbulent Flow of Viscous Incompressible Fluid in a 2D Channel Using Scheme CABARE,” Voprosy Atomn. Nauki Tekhn., No. 4, 57-62 (2013).
  7. D. G. Asfandiyarov, V. M. Goloviznin, and S. A. Finogenov, “Parameter-Free Method for Computing the Turbulent Flow in a Plane Channel in a Wide Range of Reynolds Numbers,” Zh. Vychisl. Mat. Mat. Fiz. 55 (9), 1545-1558 (2015) [Comput. Math. Math. Phys. 55 (9), 1515-1526 (2015)].
  8. D. G. Asfandiyarov, S. A. Finogenov, and V. M. Goloviznin, “Direct Numerical Simulation of Near-Wall Turbulence in a Plane Channel in a Wide Range of Reynolds Numbers,” Voprosy Atomn. Nauki Tekhn., No. 2, 48-58 (2016).
  9. V. M. Goloviznin, I. A. Korotkin, and S. A. Finogenov, “Parameter-Free Numerical Method for Modeling Thermal Convection in Square Cavities in a Wide Range of Rayleigh Numbers,” Vychisl. Mekhan. Sploshn. Sred 8 (1), 60-70 (2015).
  10. V. M. Goloviznin, I. A. Korotkin, and S. A. Finogenov, “Turbulent Natural Convection Modeling in Enclosed Tall Cavities,” Vychisl. Mekhan. Sploshn. Sred 9 (3), 253-263 (2016).
  11. P. Sagaut, Large Eddy Simulation for Incompressible Flows. An Introduction (Springer, Berlin, 2006).
  12. R. D. Moser, J. Kim, and N. N. Mansour, “Direct Numerical Simulation of Turbulent Channel Flow up to Re_τ=590,” Phys. Fluids. 11 (4), 943-945 (1999).
  13. J. Graham, K. Kanov, X. I. A. Yang, et al., “A Web Services Accessible Database of Turbulent Channel Flow and Its Use for Testing a New Integral Wall Model for LES,” J. Turbul. 17 (2), 181-215 (2016).



How to Cite

Асфандияров Д.Г. Artificial Boundary Conditions for the ILES Modeling of Plane Channel Flow Using the Cabaret Scheme // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2019. 20. 12-20. doi 10.26089/NumMet.v20r102



Section 1. Numerical methods and applications