An algorithm to identify the structure of electromagnetic fields

Authors

  • V.A. Vshivkov The Institute of Computational Mathematics and Mathematical Geophysics of SB RAS (ICM&MG SB RAS) https://orcid.org/0000-0002-1410-8747
  • L.V. Vshivkova The Institute of Computational Mathematics and Mathematical Geophysics of SB RAS (ICM&MG SB RAS)
  • G.I. Dudnikova The Institute of Computational Mathematics and Mathematical Geophysics of SB RAS (ICM&MG SB RAS)

DOI:

https://doi.org/10.26089/NumMet.v20r103

Keywords:

Maxwell’s equations, electromagnetic waves, Fourier transform

Abstract

In the study of generation mechanisms of electromagnetic radiation observed in laboratory experiments on the interaction of relativistic electron beams with plasma, the problem of determining the structure, spectral characteristics, and power of the emitted electromagnetic waves arises. So, in the numerical solution of Maxwell’s equations, there is a need to develop accurate, efficient, and reliable methods for implementing open boundary conditions that allow electromagnetic waves to exit the computational domain without reflection. The linear Maxwell’s equations describe the propagation of electromagnetic waves in vacuum and, therefore, it is possible to easily find the frequencies and amplitudes of passing and reflected waves using the Fourier analysis and to determine their structure. In order to study this question, it is sufficient to consider the problem in the two-dimensional case. The aim of this paper is to develop a method of determining the directions and amplitudes of all electromagnetic waves in a vacuum that are in the computational domain at a certain instant of time.

Author Biographies

V.A. Vshivkov

L.V. Vshivkova

G.I. Dudnikova

References

  1. I. V. Timofeev, V. V. Annenkov, and E. P. Volchok, “Generation of High-Field Narrowband Terahertz Radiation by Counterpropagating Plasma Wakefields,” Phys. Plasmas 24 (2017). doi 10.1063/1.4993100
  2. E. A. Berendeev, G. I. Dudnikova, and A. A. Efimova, “PIC-Simulation of the Electron Beam Interaction with Modulated Density Plasma,” AIP Conf. Proc. 1895 (2017). doi 10.1063/1.5007419
  3. E. Berendeev, G. Dudnikova, A. Efimova, and V. Vshivkov, “A Simple Absorbing Layer for ЕМ-Radiation from a Beam-Plasma Interaction System,” Math. Meth. Appl. Sci. 41 (18), 9276-9282 (2018).
  4. I. V. Timofeev, E. A. Berendeev, and G. I. Dudnikova, “Simulations of a Beam-Driven Plasma Antenna in the Regime of Plasma Transparency,” Phys. Plasmas 24 (2017). doi 10.1063/1.4995323
  5. V. V. Annenkov, E. A. Berendeev, I. V. Timofeev, and E. P. Volchok, “High-Power Terahertz Emission from a Plasma Penetrated by Counterstreaming Different-Size Electron Beams,” Phys. Plasmas 25 (2018). doi 10.1063/1.5048245
  6. S. Abarbanel, D. Gottlieb, and J. S. Hesthaven, “Long Time Behavior of the Perfectly Matched Layer Equations in Computational Electromagnetics,” J. Sci. Comput. 17 (1-4), 405-422 (2002).
  7. J.-P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114 (2), 185-200 (1994).
  8. M. Vranic, J. L. Martins, R. A. Fonseca, L. O. Silva, “Classical Radiation Reaction in Particle-in-Cell Simulations,” Comput. Phys. Commun. 204, 141-151 (2016).
  9. G. Mur, “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat. EMC-23} (4), 377-382 (1981).
  10. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005).
  11. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw Hill, New York, 1961).

Published

29-01-2019

How to Cite

Вшивков В.А., Вшивкова Л.В., Дудникова Г.И. An Algorithm to Identify the Structure of Electromagnetic Fields // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2019. 20. 21-28. doi 10.26089/NumMet.v20r103

Issue

Section

Section 1. Numerical methods and applications

Most read articles by the same author(s)