Calculation of diffraction efficiency in the problem of designing multilevel diffraction gratings
Authors
-
Elena V. Gusarova
-
Valeria Yu. Martynova
-
Mikhail Yu. Medvedik
Keywords:
diffraction grating
Maxwell’s equations
Helmholtz equation
eigenvalues
numerical method
variable separation method
Abstract
The process of modelling diffraction gratings is an actual problem due to the great need for their use for the needs of thermonuclear fusion. It is necessary to model diffraction gratings with higher diffraction efficiency for solving such problems. It allows us to increase the radiation power of laser installations. The spectral beam combining is applied to achieve these goals. We use various numerical methods and mathematical modelling to solve these problems. Numerical examples demonstrate the possibility of modeling more complex diffraction grating configurations than previous algorithms allowed. A comparison is made of diffraction efficiency calculations for diffraction gratings with one and three thresholds per period. The results of comparison of calculations showed the effectiveness of the proposed algorithm.
Section
Methods and algorithms of computational mathematics and their applications
References
- A. A. Petukhov, “Synthesis of Highly Efficient Multilayer Dielectric Diffraction Gratings for Spectral Combining of Laser Beams,” Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 22 (3), 201-210 (2021).
doi 10.26089/NumMet.v22r312.
- H.-J. Cho, K.-H. Lee, S.-I. Kim, et al., “Analysis on Design and Fabrication of High-Diffraction-Efficiency Multilayer Dielectric Gratings,” Curr. Opt. Photon. 2 (2), 125-133 (2018).
doi 10.3807/COPP.2018.2.2.125.
- S. A. Kemme, D. A. Scrymgeour, and D. W. Peters, “High Efficiency Diffractive Optical Elements for Spectral Beam Combining,” in Proc. SPIE 8381, Laser Technology for Defense and Security, 2012.
doi 10.1117/12.919593.
- H.-J. Cho, H.-T. Kim, and Y.-S. Lee, “Design and Fabrication of Multilayer Dielectric Gratings for Spectral Beam Combining,” in Proc. SPIE 9556, Nanoengineering: Fabrication, Properties, Optics, and Devices, 2015.
doi 10.1117/12.2186076.
- M. Yu. Medvedik, A. D. Barysheva, A. P. Demidova, et al., “Solving the Eigenvalue Problem for a Matrix by the Sign Change Method,” Vestn. Penza Gos. Univ., No. 2, 92-98 (2023).
- M. Yu. Medvedik, A. A. Dyundyaeva, V. N. Poplevina, and E. M. Davydova, “The Sign Change Method for Solving Nonlinear Systems of Algebraic Equations,” Vestn. Penza Gos. Univ., No. 2, 84-91 (2023).
- H. Qi, L. Xie, J. Zhu, et al., “High-Efficiency, Polarization-Insensitive 1400-Lines/mm Retroreflective Metagrating with Cascaded Nano-Optical Modes,” Opt. Lett. 47 (16), 3972-3975 (2022).
doi 10.1364/OL.463672.
- Yu. G. Smirnov, V. Yu. Martynova, Z. Wei, et al., “Computationally Efficient Algorithm for Designing Multilayer Dielectric Gratings,” Lobachevskii J. Math. 43 (5), 1277-1284 (2022).
doi 10.1134/S1995080222080303.
- H. T. Nguyen, J. A. Britten, T. C. Carlson, et al., “Gratings for High-Energy Petawatt-Class Lasers,” in Proc. SPIE 5991, Laser-Induced Damage in Optical Materials, 2005.
doi 10.1117/12.633689.
- V. P. Shestopalov, A. A. Kirilenko, S. A. Masalov, and Yu. K. Sirienko, Resonance Scattering of Waves, Vol. 1: Diffraction Gratings (Naukova Dumka, Kiev, 1986) [in Russian].
- M. Yu. Medvedik, “Subhierarchic Method for Solving Integral Equations on Plane Screens of Arbitrary Shape,” Izv. Vyssh. Uchebn. Zaved. Povolzh. Region. Fiz. Mat. Sci. No. 4, 48-53. 2009.
- M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings,” J. Opt. Soc. Am. A 12 (5), 1068-1076 (1995).
doi 10.1364/JOSAA.12.001068.
- E. Popov (ed.), Gratings: Theory and Numeric Applications (Institute Fresnel, Marseille, 2014).
- A. A. Tsupak, “Analysis of the Diffraction Efficiency of One-Dimensional Binary Diffraction Grating by the Plane Wave Expansion Method (the TE-Polarization Case),” Penza Gos. Univ. Proc. Volga Region. Phys. Math. Sci. № 3, 3-14 (2020).
doi 10.21685/2072-3040-2020-3-1.
- Yu. G. Smirnov, V. Yu. Martynova, M. A. Moskaleva, and A. A. Tsupak, “Study of Diffraction Efficiency of Diffraction Gratings by the Modified Method of Variables Separation,” Penza Gos. Univ. Proc. Volga Region. Phys. Math. Sci. № 4, 57-70 (2021).
doi 10.21685/2072-3040-2021-4-5.
- Yu. G. Smirnov, V. Yu. Martynova, M. A. Moskaleva, and A. V. Tikhonravov, “Modified Method of Separation of Variables for Solving Diffraction Problems on Multilayer Dielectric Gratings,” Eurasian J. Math. Comput. Appl. 9 (4), 76-88 (2021).
doi 10.32523/2306-6172-2021-9-4-76-88.
- V. Yu. Martynova, Yu. G. Smirnov, and A. V. Tikhonravov, “A Numerical Method for the Optimization of the Diffraction Efficiency of Thin-Layer Coatings with Diffraction Gratings,” Differ. Uravn. 59 (3), 400-408 (2023).
doi 10.31857/S0374064123030111.
- V. Yu. Martynova, Yu. G. Smirnov, and A. V. Tikhonravov, “Optimization of Parameters of Multilayer Diffraction Gratings Using Needle Variations,” Penza Gos. Univ. Proc. Volga Region. Phys. Math. Sci. No. 4, 56-68 (2022).
doi 10.21685/2072-3040-2022-4-6.
- T. He, J. Zhang, H. Jiao, et al., “Near-Infrared Broadband Si: H/SiO_2 Multilayer Gratings with High Tolerance to Fabrication Errors,” Nanotechnology 31 (31), Article Number 315203 (2020).
doi 10.1088/1361-6528/ab8768.