TerMPS: software for preparing land surface parameter data used in land surface models and Earth system models
Authors
-
Anna A. Ryazanova
-
Vasiliy Yu. Bogomolov
-
Victor M. Stepanenko
-
Mikhail I. Varentsov
-
Aleksandr I. Medvedev
Keywords:
geospatial data
data aggregation
mathematical modeling
weather and climate
Abstract
The land surface and the Earth system models provide for the use of various external data on the parameters of the underlying surface. These parameters serve as coefficients of differential equations for the transfer and transformation of heat, moisture and carbon categories in the surface layer. Modern sets of such parameters are contained in high-resolution geospatial data archives (e.g., 30'') and their use in the model requires aggregation onto a larger grid and coordination of parameters from different archives. Special software was developed to solve this problem. Such a tool makes it possible to create archives of land surface parameters on an arbitrary uniform latitude-longitude grid.
Section
Methods and algorithms of computational mathematics and their applications
References
- N. G. Heavens, D. S. Ward, and M. M. Natalie, “Studying and Projecting Climate Change with Earth System Models,” Nat. Educ. Knowl. 4 (5), 4 pages (2013).
- R. A. Fisher and C. D. Koven, “Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems,” J. Adv. Model. Earth Syst. 12 (4), Article Number e2018MS001453 (2020).
doi 10.1029/2018MS001453
- G. Danabasoglu, J.-F. Lamarque, J. Bacmeister, et al., “The Community Earth System Model Version 2 (CESM2),” J. Adv. Model. Earth Syst. 12 (2), Article Number e2019MS001916 (2020).
doi 10.1029/2019MS001916
- D. M. Lawrence, R. A. Fisher, C. D. Koven, et al., “The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty,” J. Adv. Model. Earth Syst. 11 (12), 4245-4287 (2019).
doi 10.1029/2018MS001583
- A. Voldoire, E. Sanchez-Gomez, D. Salas y Mélia, et al., “The CNRM-CM5.1 Global Climate Model: Description and Basic Evaluation,” Clim. Dyn. 40 (9-10), 2091-2121 (2013).
doi 10.1007/s00382-011-1259-y
- V. Masson, J.-L. Champeaux, F. Chauvin, et al., “A Global Database of Land Surface Parameters at 1 km Resolution in Meteorological and Climate Models,” J. Clim. 16 (9), 1261-1282 (2003).
doi 10.1175/1520-0442(2003)16<1261: AGDOLS>2.0.CO;2.
- W. C. Skamarock, J. B. Klemp, J. Dudhia, et al., A Description of the Advanced Research WRF Model Version 4 NCAR Technical Notes No. NCAR/TN-556+STR (National Center for Atmospheric Research, Boulder, 2021).
doi 10.5065/1dfh-6p97
- M. Baldauf, A. Seifert, J. Förstner, et al., “Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities,” Mon. Wea. Rev. 139 (12), 3887-3905 (2011).
doi 10.1175/MWR-D-10-05013.1
- H. Asensio, M. Messmer, D. Lüthi, et al., External Parameters for Numerical Weather Prediction and Climate Application EXTPAR v5.6.
https://www.cosmo-model.org/content/tasks/workGroups/wg3b/docs/ EXTPAR_user_and_implementation_manual_20210906.pdf . Cited November 15, 2024.
- V. M. Stepanenko, A. I. Medvedev, V. Yu. Bogomolov, et al., “Land Surface Scheme TerM: the Model Formulation, Code Architecture and Applications,” Russ. J. Numer. Anal. Math. Model. 39 (6) (in press).
- E. M. Vilodin, V. Ya. Galin, A. S. Gritsun, et al., Mathematical Modeling of the Earth System (MAKS Press, Moscow, 2016).
https://seakc.meteoinfo.ru/images/media/images-seakc/seakc/INM/4.pdf . Cited November 15, 2024.
- G. Beliakov, H. B. Sola, and T. Calvo, A Practical Guide to Averaging Functions (Springer, Cham, 2016).
doi 10.1007/978-3-319-24753-3
- R. K. Rew, G. P. Davis, S. Emmerson, and H. Davies, NetCDF User’s Guide for C. An Interface for Data Access, Version 3 (1997).
http://fileformats.archiveteam.org/wiki/NetCDF . Cited November 15, 2024.
- Y. Dai, Q. Xin, N. Wei, et al., “A Global High‐Resolution Data Set of Soil Hydraulic and Thermal Properties for Land Surface Modeling,” J. Adv. Model. Earth Syst. 11 (9), 2996-3023 (2019).
doi 10.1029/2019MS001784
- Global Land Cover Characterization (GLCC).
doi 10.5066/F7GB230D
- V. A. Egorov, S. A. Bartalev, P. A. Kolbudaev, et al., “Land Cover Map of Russia Derived from Proba-V Satellite Data,” Current Problems in Remote Sensing of the Earth from Space. 15 (2), 282-286 (2018).
doi 10.21046/2070-7401-2018-15-2-282-286
- M. Choulga, E. Kourzeneva, E. Zakharova, and A. Doganovsky, “Estimation of the Mean Depth of Boreal Lakes for Use in Numerical Weather Prediction and Climate Modelling,” Tellus A: Dyn. Meteorol. Oceanogr. 66 (1), Article Number 21295 (2014).
doi 10.3402/tellusa.v66.21295
- D. Zanaga, R. Van De Kerchove, W. De Keersmaecker, et al., “ESA WorldCover 10 m 2020 v100,” Zenodo. 2021. Version v100 [Data set].
doi 10.5281/zenodo.5571936
- M. Buchhorn, M. Lesiv, N.-E. Tsendbazar, et al., “Copernicus Global Land Cover Layers--Collection 2,” Remote Sens. 12 (6), Article Number 1044 (2020).
doi 10.3390/rs12061044
- M. Demuzere, J. Kittner, A. Martilli, et al., “A Global Map of Local Climate Zones to Support Earth System Modelling and Urban-Scale Environmental Science,” Earth Syst. Sci. Data 14 (8), 3835-3873 (2022).
doi 10.5194/essd-14-3835-2022
- R. Myneni, Y. Knyazikhin, and T. Park, MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500 m SIN Grid V006. Distributed by NASA EOSDIS Land Processes DAAC (2015).
doi 10.5067/MODIS/MCD15A2H.006
- M. Golub, W. Thiery, R. Marcé, et al., “A Framework for Ensemble Modelling of Climate Change Impacts on Lakes Worldwide: the ISIMIP Lake Sector,” Geosci. Model Dev. 15 (11), 4597-4623 (2022).
doi 10.5194/gmd-15-4597-2022
- B. Lehner, K. Verdin, and A. Jarvis, “New Global Hydrography Derived from Spaceborne Elevation Data,” Eos Trans. AGU. 89 (10), 93-94 (2008).
doi 10.1029/2008EO100001
- C. Amante and B. W. Eakins, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis (National Geophysical Data Center, Boulder, 2009).
- R. B. Clapp and G. M. Hornberger, “Empirical Equations for Some Soil Hydraulic Properties,” Water Resour. Res. 14 (4), 601-604 (1978).
doi 10.1029/WR014i004p00601
- Y. Mualem, “A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media,” Water Resour. Res. 12 (3), 513-522 (1976).
doi 10.1029/WR012i003p00513
- M. Th. van Genuchten, “A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils,” Soil Sci. Soc. Am. J. 44 (5), 892-898 (1980).
doi 10.2136/sssaj1980.03615995004400050002x
- M. Varentsov, T. Samsonov, and M.Demuzere, “Impact of Urban Canopy Parameters on a Megacity’s Modelled Thermal Environment,” Atmosphere 11 (12), Article Number 1349 (2020).
doi 10.3390/atmos11121349
- M. A. Tarasova, M. I. Varentsov, and V. M. Stepanenko, “Parameterization of the Interaction between the Atmosphere and the Urban Surface: Current State and Prospects,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 59 (2), 127-148 (2023) [Izv. Atmos. Ocean. Phys. 59 (2), 111-130 (2023)].
doi 10.1134/S0001433823020068
- H. Hersbach, B. Bell, P. Berrisford, et al., “The ERA5 Global Reanalysis,” Q.J.R. Meteorol. Soc. 146 (730), 1999-2049 (2020).
doi 10.1002/qj.3803