DOI: https://doi.org/10.26089/NumMet.v24s06

Quantum-chemical simulation of high-energy fluorodinitromethylazoxy compounds

Authors

  • Vadim M. Volokhov
  • Vladimir V. Parakhin
  • Elena S. Amosova
  • David B. Lempert
  • Vladimir V. Voevodin
  • Ivan I. Akostelov

Keywords:

high performance computing
quantum chemical calculations
high energy compounds
enthalpy of formation
fluorodinitromethyl-ONN-azoxy compounds

Abstract

The work addresses to the search and study of new high-energy density materials. The physicochemical properties of a series of fluorodinitromethyl-ONN-azoxy compounds were studied. Using parallel high-performance quantum chemical calculations, the geometry of the structures was optimized using the density functional theory and the IR absorption spectra were calculated. The enthalpy of formation in the gas phase of the studied compounds was determined using the methods of the atomization reaction and the reaction of formation of the studied compounds from simple substances. The dependence of the enthalpy of formation in the gas phase on the structural features of the compounds was analyzed. Various quantum chemical methods implemented in the Gaussian 09 and NWChem software packages were compared in terms of accuracy and time costs. An assessment was made of the use of the QSPR model to determine the enthalpy of sublimation.


Published

2024-12-24

Issue

Section

Parallel software tools and technologies

Author Biographies

Vadim M. Volokhov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
• Chief Researcher

Vladimir V. Parakhin

Elena S. Amosova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
• Researcher

David B. Lempert

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
• Chief Researcher

Vladimir V. Voevodin

Ivan I. Akostelov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
• Assistant


References

  1. L. Pei, C.-P. Xie, P. Yin, and S.-P. Pang, “N-Amination of Nitrogen-Rich Scaffolds: from Single N-N Bond Formation to Diverse Energetic Functionalization Strategies,” Energ. Mater. Front. 2 (4), 306-316 (2021).
    doi 10.1016/j.enmf.2021.11.003
  2. D. Herweyer, J. L. Brusso, and M. Murugesu, “Modern Trends in “Green” Primary Energetic Materials,” New J. Chem. 45 (23), 10150-10159 (2021).
    doi 10.1039/D1NJ01227D
  3. J. J. Sabatini and E. C. Johnson, “A Short Review of Nitric Esters and Their Role in Energetic Materials,” ACS Omega 6 (18), 11813-11821 (2021).
    doi 10.1021/acsomega.1c01115
  4. Y. Zhou, H. Gao, and J. M. Shreeve, “Dinitromethyl Groups Enliven Energetic Salts,” Energ. Mater. Front. 1 (1), 2-15 (2020).
    doi 10.1016/j.enmf.2020.04.001
  5. Y. Qu and S. P. Babailov, “Azo-Linked High-Nitrogen Energetic Materials,” J. Mater. Chem. A. 6 (5), 1915-1940 (2018).
    doi 10.1039/C7TA09593G
  6. J. Zhou, J. Zhang, B. Wang, et al., “Recent Synthetic Efforts towards High Energy Density Materials: How to Design High-Performance Energetic Structures?’’ FirePhysChem. 2 (2), 83-139 (2022).
    doi 10.1016/j.fpc.2021.09.005
  7. O. A. Luk’yanov, Yu. B. Salamonov, Yu. T. Struchkov, et al., “Aryl-NNO-Azoxy-α-Nitro- and -α, α-Dinitro-Alkanes,” Mendeleev Commun. 2 (2), 52-53 (1992).
    doi 10.1070/MC1992v002n02ABEH000127
  8. O. A. Luk’yanov, G. V. Pokhvisneva, T. V. Ternikova, et al., “Aliphatic α-Nitroalkyl-ONN-Azoxy Compounds and Their Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 10, 2000-2006 (2009) [Russ. Chem. Bull. 58 (10), 2063-2069 (2009)].
    doi 10.1007/s11172-009-0283-0
  9. O. A. Luk’yanov, G. V. Pokhvisneva, T. V. Ternikova, et al., “α-Nitroalkyl-ONN-Azoxyfurazanes and some of Their Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 8, 1678-1686 (2011) [Russ. Chem. Bull. 60 (8), 1703-1711 (2011)].
    doi 10.1007/s11172-011-0254-0
  10. O. A. Luk’yanov, V. V. Parakhin, G. V. Pokhvisneva, and T. V. Ternikova, “3-Amino-4-(α-Nitroalkyl-ONN-Azoxy)Furazans and Some of Their Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 2, 353-357 (2012) [Russ. Chem. Bull. 61 (2), 355-359 (2012)].
    doi 10.1007/s11172-012-0049-y
  11. O. A. Luk’yanov, G. V. Pokhvisneva, T. V. Ternikova, and N. I. Shlykova, “3, 4-Bis(α-Nitroalkyl-ONN-Azoxy)Furazans and Some of Their Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 2, 358-363 (2012) [Russ. Chem. Bull. 61 (2), 360-365 (2012)].
    doi 10.1007/s11172-012-0050-5
  12. O. A. Luk’yanov and V. V. Parakhin, “3-(α-Nitroalkyl- and α-Polynitroalkyl-ONN-Azoxy)- 4-Nitraminofurazans and Some of Their Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 8, 1566-1574 (2012) [Russ. Chem. Bull. 61 (8), 1582-1590 (2012)].
    doi 10.1007/s11172-012-0210-7
  13. O. A. Luk’yanov, G. V. Pokhvisneva, and T. V. Ternikova, “Bis(Nitro- and Polynitromethyl-ONN-azoxy) Azoxyfurazans and Some of Their Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 8, 1767-1770 (2012) [Russ. Chem. Bull. 61 (8), 1783-1786 (2012)].
    doi 10.1007/s11172-012-0245-9
  14. V. V. Parakhin and O. A. Luk’yanov, “4-Hydroxy-3-(α-Nitroalkyl-ONN-Azoxy)Furazans and Some Their O-Derivatives,” Izv. Akad. Nauk, Ser. Chem. No. 2, 514-518 (2013) [Russ. Chem. Bull. 62 (2), 516-520 (2013)].
    doi 10.1007/s11172-013-0071-8
  15. V. V. Parakhin and O. A. Luk’yanov, “4-Hydroxy-3-(Polynitromethyl-ONN-Azoxy)Furazans and Some of Their Derivatives,” Russ. Chem. Bull. 62 (9), 2007-2012 (2013).
    doi 10.1007/s11172-013-0291-y
  16. O. A. Luk’yanov, G. V. Pokhvisneva, and T. V. Ternikova, “A Novel Method to Access Dinitromethyl-ONN-Azoxy Compounds,” Izv. Akad. Nauk, Ser. Chem. No. 1, 83-86 (2015) [Russ. Chem. Bull. 64 (1), 83-86 (2015)].
    doi 10.1007/s11172-015-0824-7
  17. O. A. Luk’yanov, G. V. Pokhvisneva, and T. V. Ternikova, “Nitro-Substituted Bis (Methyl-ONN-Azoxyfurazanyl) Furoxans,” Izv. Akad. Nauk, Ser. Chem. No. 1, 137-141 (2015) [Russ. Chem. Bull. 64 (1), 137-141 (2015)].
    doi 10.1007/s11172-015-0832-7
  18. J. Zhang, F. Bi, P. Lian, et al., “Synthesis and Characterization of an Energetic Compound 3, 3’-Bis (Fluoronitromethyl-ONN-Azoxy) Azoxyfurazan,” Chin. J. Org. Chem. 37 (10), 2736-2744 (2017).
    doi 10.6023/cjoc201701014
  19. V. Volokhov, I. Akostelov, V. Parakhin, et al., “Quantum-Chemical Simulation of High-Energy Azoxy Compounds,” in Communications in Computer and Information Science (Springer, Cham, 2023), Vol. 1868, pp. 231-243.
    doi 10.1007/978-3-031-38864-4_16
  20. V. V. Parakhin, V. M. Volokhov, E. S. Amosova, et al., “Some High-Energy Trinitromethyl-ONN-Furazans as Binder Plasticizers in Model Solid Composite Propellants,” Chem. Fiz. 43 (5), 34-47 (2024) [Russ. J. Phys. Chem. B. 18 (3), 697-706 (2024)].
    doi 10.1134/S1990793124700088
  21. G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, and V. A. Strunin, Thermal Decomposition and Combustion of Explosives and Propellants(CRC Press, London, 2003).
    doi 10.1201/9781482288261
  22. J. P. Agrawal and R. D. Hodgson, Organic Chemistry of Explosives(Wiley, Hoboken, 2007).
  23. A. L. Fridman, V. D. Surkov, and S. S. Novikov, “Chemistry of α-Halogenonitroalkanes,” Usp. Chem. No. 11, 2159-2187 (1980) [Russ. Chem. Rev. 49 (11), 1068-1083 (1980)].
    doi 10.1070/RC1980v049n11ABEH002528
  24. H. Feuer and A. Nielsen (Eds.), Nitro Compounds. Recent Advances in Synthesis and Chemistry (VCH Publ., New York, 1990).
  25. S. Wang, C. Li, T. Lu, et al., “Fused Triazolotriazine Bearing a Gem -Dinitro Group: a Promising High Energy Density Material,” New J. Chem. 45 (22), 9766-9769 (2021).
    doi 10.1039/D1NJ01051D
  26. H. Huo, J. Zhang, J. Dong, et al., “A Promising Insensitive Energetic Material Based on a Fluorodinitromethyl Explosophore Group and 1, 2, 3, 4-Tetrahydro-1, 3, 5-Triazine: Synthesis, Crystal Structure and Performance,” RSC Adv. 10 (20), 11816-11822 (2020).
    doi 10.1039/D0RA00474J
  27. L. Zhai, J. Zhang, M. Wu, et al., “Balancing Good Oxygen Balance and High Heat of Formation by Incorporating of -textC(NO_2)_2F Moiety and Tetrazole into Furoxan Block,” J. Mol. Struct. 1222, Article Number 128934 (2020).
    doi 10.1016/j.molstruc.2020.128934
  28. J. Zhang, H. Huo, T. Yu, et al., “Comparative Thermal Research on Chlorodinitromethyl and Fluorodinitromethyl Explosophoric Groups Based Insensitive Energetic Materials,” FirePhysChem 1 (1), 54-60 (2021).
    doi 10.1016/j.fpc.2021.02.005
  29. N. V. Palysaeva, A. G. Gladyshkin, I. A. Vatsadze, et al., “N-(2-Fluoro-2, 2-Dinitroethyl)Azoles: a Novel Assembly of Diverse Explosophoric Building Blocks for Energetic Compound Design,” Org. Chem. Front. 6 (2), 249-255 (2019).
    doi 10.1039/c8qo01173g
  30. W. Wang, G. Cheng, H. Xiong, and H. Yang, “Functionalization of Fluorodinitroethylamino Derivatives Based on Azole: A New Family of Insensitive Energetic Materials,” New J. Chem. 42 (4), 2994-3000 (2018).
    doi 10.1039/C7NJ05009G
  31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision B.01 (Gaussian Inc., Pittsburgh, 2009).
  32. M. Valiev, E. J. Bylaska, N. Govind, et al., “NWChem: A Comprehensive and Scalable Open-Source Solution for Large Scale Molecular Simulations,” Comput. Phys. Commun. 181 (9), 1477-1489 (2010).
    doi 10.1016/j.cpc.2010.04.018
  33. A. D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” J. Chem. Phys. 98 (7), 5648-5652 (1993).
    doi 10.1063/1.464913
  34. B. G. Johnson, P. M. W. Gill, and J. A. Pople, “The Performance of a Family of Density Functional Methods,” J. Chem. Phys. 98 (7), 5612-5626 (1993).
    doi 10.1063/1.464906
  35. L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Gaussian-4 Theory Using Reduced Order Perturbation Theory,” J. Chem. Phys. 127 (12), Article Number 124105 (2007).
    doi 10.1063/1.2770701
  36. L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “GnTheory,” Comput. Mol. Sci. 1 (5), 810-825 (2011).
    doi 10.1002/wcms.59
  37. L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Gaussian-4 Theory,” J. Chem. Phys. 126 (8), Article Number 084108 (2007).
    doi 10.1063/1.2436888
  38. Vibrational Frequency Scaling Factors.
    https://cccbdb.nist.gov/vsfx.asp . Cited December 12, 2024.
  39. M. Bagheri, M. Bagheri, A. H. Gandomi, and A. Golbraikh, “Simple yet Accurate Prediction Method for Sublimation Enthalpies of Organic Contaminants Using Their Molecular Structure,” Thermochim. Acta 543, 96-106 (2012).
    doi 10.1016/j.tca.2012.05.008
  40. V. V. Parakhin, V. M. Volokhov, E. S. Amosova, and D. B. Lempert, “Energetic Potential of a Series of Fluorodinitromethyl-ONN-Azoxyfurazans as Binder Plasticizers in Model Solid Composite Propellants,” Combustion, Explosion, and Shock Waves (in print).
  41. H. Wei, J. Zhang, C. He, and J. M. Shreeve, “Energetic Salts Based on Furazan-Functionalized Tetrazoles: Routes to Boost Energy,” Chem. – Eur. J. 21 (23), 8607-8612 (2015).
    doi 10.1002/chem.201500513
  42. T. M. Klapötke and B. Krumm, “Azide-Containing High Energy Materials,” in Organic Azides: Syntheses and Applications (Wiley, Chichester, 2010), pp. 391-413.
  43. Y. Tang and J. M. Shreeve, “Nitroxy/Azido-Functionalized Triazoles as Potential Energetic Plasticizers,” Chem. - Eur. J. 21 (19), 7285-7291 (2015).
    doi 10.1002/chem.201500098
  44. O. A. Luk’yanov, V. V. Parakhin, N. I. Shlykova, et al., “Energetic N-Azidomethyl Derivatives of Polynitro Hexaazaisowurtzitanes Series: GL-20 Analogues Having the Highest Enthalpy,” New J. Chem. 44 (20), 8357-8365 (2020).
    doi 10.1039/D0NJ01453B
  45. Vl. V. Voevodin, A. S. Antonov, D. A. Nikitenko, et al., “Supercomputer Lomonosov-2: Large-Scale, Deep Monitoring and Fine Analytics for the User Community,” Supercomput. Front. Innov. 6 (2), 4-11 (2019).
    doi 10.14529/jsfi190201
  46. D. A. Nikitenko, V. V. Voevodin, and S. A. Zhumatiy, “Deep Analysis of Job State Statistics on ’Lomonosov-2’ Supercomputer,” Supercomput. Front. Innov. 5 (2), 4-10 (2018).
    doi 10.14529/jsfi180201