DOI: https://doi.org/10.26089/NumMet.2024s07

Computational algorithms and applied mathematical software for high and ultra-high performance systems. Educational aspect

Authors

  • Boris N. Chetverushkin
  • Mikhail V. Yakobovskiy

Keywords:

computational methods
mathematical modeling
parallel algorithms
highly qualified personnel
hyperbolization of systems of equations
locally adaptive meshes
decomposition of computational meshes
automation of parallel program development
fault tolerance

Abstract

The article discusses algorithms and methods of numerical modeling on high-performance computing systems of massive parallelism, ensuring the efficient use of general-purpose processors and graphics accelerators. Using the example of the interaction of the Computational Mathematics and Cybernetics Department of Moscow State University and the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, the article emphasizes the high role of training personnel for the development of supercomputer technologies and solving complex fundamental and applied problems with their help. The article discusses the possibilities of solving such diverse problems, based on fundamental research, as reducing the amount of calculations in the study of continuum mechanics problems and ensuring the possibility of performing fault-tolerant calculations. It is noted that it is necessary to maintain and strengthen the training of highly qualified personnel with fundamental training to solve interdisciplinary problems in the interests of maintaining the competitiveness of key science-intensive industries.


Published

2024-12-27

Issue

Section

Parallel software tools and technologies

Author Biographies

Boris N. Chetverushkin

Keldysh Institute of Applied Mathematics RAS
• Scientific Director of the Institute

Mikhail V. Yakobovskiy

Keldysh Institute of Applied Mathematics RAS
• Deputy Director for Research


References

  1. B. N. Chetverushkin, Kinetic Schemes and Quasi-Gasdynamic System of Equations (Maks Press, Moscow, 2004; CIMNE Barselona, 2008).
  2. B. N. Chetverushkin and M. V. Yakobovskiy, “Numerical Algorithms and Fault Tolerance of Hyperexascale Computer Systems,” Dokl. Akad. Nauk 472 (1), 13-17 (2017) [Dokl. Math. 95 (1), 7-11 (2017)].
    doi 10.1134/S1064562417010021
  3. B. N. Chetverushkin, M. V. Yakobovskiy, M. A. Kornilina, and A. V. Semenova, “Numerical Algorithms for HPC Systems and Fault Tolerance,” in Communications in Computer and Information Science (Springer, Cham, 2019), Vol. 1063, pp. 34-44.
    doi 10.1007/978-3-030-28163-2_3
  4. S. I. Repin and B. N. Chetverushkin, “Estimates of the Difference between Approximate Solutions of the Cauchy Problems for the Parabolic Diffusion Equation and a Hyperbolic Equation with a Small Parameter,” Dokl. Akad. Nauk 451 (3), 255-258 (2013) [Dokl. Math. 88 (1), 417-420 (2013)].
    doi 10.1134/S1064562413040157
  5. M. D. Surnachev, V. F. Tishkin, and B. N. Chetverushkin, “On Conservation Laws for Hyperbolized Equations,” Differ. Uravn. 52 (7), 859-865 (2016) [Differ. Equ. 52 (7), 817-823 (2016)].
    doi 10.1134/S0012266116070016
  6. B. N. Chetverushkin and A. A. Zlotnik, “On a Hyperbolic Perturbation of a Parabolic Initial-Boundary Value Problem,” Appl. Math. Lett. 83, 116-122 (2018).
    doi 10.1016/j.aml.2018.03.027
  7. B. N. Chetverushkin and A. V. Gulin, “Explicit Schemes and Numerical Simulation Using Ultrahigh-Performance Computer Systems,” Reports of the Academy of Sciences. 446 (5), 501-503 (2012). Dokl. Akad. Nauk 446 (5), 501-503 (2012) [Dokl. Math. 86 (2), 681-683 (2012)].
    doi 10.1134/S1064562412050213
  8. B. N. Chetverushkin, A. V. Saveliev, and V. I. Saveliev, “Kinetic Algorithms for Modeling Conductive Fluids flow on High-Performance Computing Systems,” Dokl. Akad. Nauk 489 (6), 552-557 (2019) [Dokl. Math. 100 (3), 577-581 (2019)].
    doi 10.1134/S1064562419060206
  9. B. N. Chetverushkin, O. G. Olkhovskaya, and V. A. Gasilov, “Three-Level Scheme for Solving the Radiation Diffusion Equation,” Dokl. Akad. Nauk 512 (1), 89-95 (2023) [Dokl. Math. 108 (1), 320-325 (2023)].
    doi 10.1134/S1064562423700837
  10. B. N. Chetverushkin, “Lower Bounds on Scales in Continuum Mechanics,” in Proc. Seminar on Time, Chaos, Mathematical Problems under supervision of V.A. Sadovnichii (Mosk. Gos. Univ., Moscow, 2009), Vol. 4,  75-96.
  11. B. N. Chetverushkin and M. V. Yakobovskiy, “Computational Algorithms and Architecture of High-Performance Systems,” Preprint No. 52 (Keldysh Institute of Applied Mathematics, Moscow, 2018).
  12. M. V. Yakobovskiy and M. A. Kornilina, “Development of Supercomputer Technologies at the Institute of Mathematical Modelling and Keldysh Institute of Applied Mathematics of Russian Academy of Sciences,” Computational Mathematics and Information Technologies 8 (1), 12-28 (2024).
    doi 10.23947/2587-8999-2024-8-1-12-28
  13. A. A. Sukhinov, “Construction of Cartesian Meshes with Dynamic Adaptation to the Solution,” Mat. Model. 22 (1), 86-98 (2010).
  14. I. V. Abalakin, N. S. Zhdanova, and S. A. Soukov, “Reconstruction of Body Geometry on Unstructured Meshes by the Immersed Boundary Method,” Mat. Model. 28 (6), 77-88 (2016) [Math. Models Comput. Simul. 9 (1), 83-91 (2017)].
    doi 10.1134/S2070048217010033
  15. G. Karypis, “Family of Graph and Hypergraph Partitioning Software,”
    https://github.com/CIBC-Internal/metis-4.0.3/tree/master . Cited December 26, 2024.
  16. V. A. Bakhtin and V. A. Krukov, “DVM-Approach to the Automation of the Development of Parallel Programs for Clusters,” Programmirovanie, No. 3, 43-56 (2019) [Program. Comput. Soft. 45 (3), 121-132 (2019)].
    doi 10.1134/S0361768819030034
  17. DVM System | DVM System.
    http://dvm-system.org . Cited December 26, 2024.
  18. I. V. Abalakin, P. A. Bakhvalov, V. G. Bobkov, et al., “NOISEtte CFD&CAA Supercomputer Code for Research and Applications,” Supercomput. Front. Innov. 11 (2), 78-101 (2024).
    doi 10.14529/jsfi240206
  19. A. R. Magomedov and A. V. Gorobets, “Heterogeneous Implementation of Preconditioners Based on Gauss-Seidel Method for Sparse Block Matrices,” Prikl. Mat. Inform. No. 72, 38-45 (2023) [Comput. Math. Model. 33 (4), 438-442 (2022)].
    doi 10.1007/s10598-023-09585-2
  20. A. V. Gorobets, S. A. Soukov, and A. R. Magomedov, “Heterogeneous Parallel Implementation of a Multigrid Method with Full Approximation in the Noisette Code,” Mat. Model. 36 (2), 129-146 (2024) [Math. Models Comput. Simul. 16 (4), 609-619 (2024)].
    doi 10.1134/S2070048224700261
  21. The Tenth Anniversary Russian Conference, “Computational Experiment in Aeroacoustics and Aerodynamics,” 16-21.09.2024.
    https://ceaa.imamod.ru . Cited December 26, 2024.