A reduced linearization method for solving problems of nonlinear optimization

Authors

  • S.V. Panferov

Keywords:

problems of nonlinear optimization
linearization method
linear constraints
reduces gradient method
linear convergence

Abstract

An approach to solving a problem of optimization with constraints is proposed. An algorithm based on a synthesis of such methods as the separation of variables, the dimension reduction, and the method of reducing the original problem to an auxiliary one. A number of applicability conditions for this algorithm and a convergence theorem are formulated.


Published

2012-09-28

Issue

Section

Section 1. Numerical methods and applications

Author Biography

S.V. Panferov

Dubna State University
• Associate Professor


References

  1. Ferris M.C., Zavriev S.K. The linear convergence of a successive linear programming algorithm. Technical Report 96-112. Computer Sciences Department, University of Wisconsin. Madison, 1996.
  2. Bertsecas D.P. Nonlinear Programming. Belmont: Athena Scientific, 1995.
  3. Goreinov S.A., Tyrtyshnikov E.E., Zamarashkin N.L. A theory of pseudoskeleton approximations // Linear Algebra and its Applications. 1997. N 261. 1-21.
  4. Сухарев А.Г., Тимохов А.В., Федоров В.В. Курс методов оптимизации. М.: Физматлит, 2005.
  5. Панферов C.В. Гарантированная оценка угла между касательной и координатной плоскостью // Прикладная математика и информатика. Вып. 8. М.: МАКС Пресс, 2001. 154-158.

 How to cite   
Markelova T.V. and Snytnikov V.N. Simulation of planet formation in circumstellar disks // Numerical Methods and Programming. 2012. 13, No 3. 443–451.

TEX CODE:

Markelova T. and Snytnikov V. , (2012) “Simulation of planet formation in circumstellar disks,” Numerical Methods and Programming, vol. 13, no. 3, pp. 443–451.

TEX CODE:

T. Markelova and V. Snytnikov, “Simulation of planet formation in circumstellar disks,” Numerical Methods and Programming 13, no. 3 (2012): 443–451

TEX CODE:

Markelova T. and Snytnikov V. Simulation of planet formation in circumstellar disks. Numerical Methods and Programming. 2012;13(3):443–451.(In Russ.).

TEX CODE:



Featured articles