A reduced linearization method for solving problems of nonlinear optimization


  • S.V. Panferov Dubna State University


problems of nonlinear optimization, linearization method, linear constraints, reduces gradient method, linear convergence


An approach to solving a problem of optimization with constraints is proposed. An algorithm based on a synthesis of such methods as the separation of variables, the dimension reduction, and the method of reducing the original problem to an auxiliary one. A number of applicability conditions for this algorithm and a convergence theorem are formulated.

Author Biography

S.V. Panferov

Dubna State University
• Associate Professor


  1. Ferris M.C., Zavriev S.K. The linear convergence of a successive linear programming algorithm. Technical Report 96-112. Computer Sciences Department, University of Wisconsin. Madison, 1996.
  2. Bertsecas D.P. Nonlinear Programming. Belmont: Athena Scientific, 1995.
  3. Goreinov S.A., Tyrtyshnikov E.E., Zamarashkin N.L. A theory of pseudoskeleton approximations // Linear Algebra and its Applications. 1997. N 261. 1-21.
  4. Сухарев А.Г., Тимохов А.В., Федоров В.В. Курс методов оптимизации. М.: Физматлит, 2005.
  5. Панферов C.В. Гарантированная оценка угла между касательной и координатной плоскостью // Прикладная математика и информатика. Вып. 8. М.: МАКС Пресс, 2001. 154-158.



How to Cite

Панфёров С. A Reduced Linearization Method for Solving Problems of Nonlinear Optimization // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2012. 13. 440-442



Section 1. Numerical methods and applications