Galactic dynamo equations with random coefficients

Authors

  • E.A. Mikhailov
  • I.I. Modyaev

Keywords:

galaxy magnetic fields
equations with random coefficients
dynamo theory
intermittency

Abstract

A problem connected with magnetic fields of galaxies is considered. Their evolution is described by the dynamo mechanism existing due to the alpha-effect and the differential rotation. These phenomena are characterized by dimensionless coefficients of the dynamo equations. Usually, it is assumed that these parameters are deterministic. We assume that one of them is described by a random process and is renewed on some small time interval. We also assume that this parameter can take one of two values with some dispersion and probability. Each of these values characterizes a component of the interstellar medium. The growth rates of statistical moments of the magnetic field are evaluated. It is shown that there exists the intermittency phenomenon in this problem (the higher moments grow faster). The problem that has only a time dependence and the problem that has a spatial dependence are also considered. It is shown that the spatial dependence lowers the magnetic field growth rate, which can be explained by some extra dissipation of the magnetic field energy. A nonlinear modification of the problem is discussed.


Published

2014-06-02

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

E.A. Mikhailov

I.I. Modyaev


References

  1. Зельдович Я.Б. Наблюдения во Вселенной, однородной лишь в среднем // Астрономический журнал. 1964. 41, № 1. 19-24.
  2. Beck R. Magnetic fields in galaxies // Space Sci. Rev. 2012. 166, N 1-4. 215-230.
  3. Молчанов С.А., Рузмайкин А.А., Соколов Д.Д. Кинематическое динамо в случайном потоке // Успехи физических наук. 1985. 145, № 4. 593-628.
  4. Beck R., Brandenburg A., Moss D., Shukurov A., Sokoloff D. Galactic magnetism: recent development and perspectives // Ann. Rev. Astron. Astrophys. 1996. 34. 155-206.
  5. Arshakian T.G., Beck R., Krause M., Sokoloff D. Evolution of magnetic fields in galaxies and future observational tests with the Square Kilometre Array // Astron. Astrophys. 2009. 494, N 1. 21-32.
  6. Михайлов Е.А., Соколов Д.Д., Ефремов Ю.Н. Темп звездообразования и магнитные поля спиральных галактик // Письма в Астрономический журнал. 2012. 38, № 9. 611-616.
  7. Proctor M.R. E. Effects on fluctuations on alpha Omega dynamo models // Mon. Not. R. Astron. Soc. 2007. 382, N 1. L39-L42.
  8. Sur S., Subramanian K. Galactic dynamo action in presence of stochastic alpha and shear // Mon. Not. R. Astron. Soc. 2009. 392, N 1. L6-L10.
  9. Richardson K.J., Proctor M.R. E. Fluctuating alpha Omega dynamos by iterated matrices // Mon. Not. R. Astron. Soc. 2012. 422, N 1. L53-L56.
  10. Moss D. On the generation of bisymmetric magnetic field structures in spiral galaxies by tidal interactions // Mon. Not. R. Astron. Soc. 1995. 275, N 1. 191-194.
  11. Phillips A. A comparison of the asymptotic and no-z approximations for galactic dynamos // Geophys. Astrophys. Fluid Dyn. 2001. 94, N 1-2. 135-150.
  12. Moss D., Sokoloff D. Magnetic field reversals and galactic dynamos // Geophys. Astrophys. Fluid Dyn. 2013. 107, N 5. 497-505.
  13. Tutubalin V.N. A central limit theorem for products of random matrices and some of its applications // Symposia Mathematica. 1977. XXI. 101-116.
  14. Михайлов Е.А., Соколов Д.Д., Тутубалин В.Н. Фундаментальная матрица для уравнения Якоби со случайными коэффициентами // Вычислительные методы и программирование. 2010. 11. 261-268.
  15. Moss D. Modelling magnetic fields in spiral galaxies // Astronomy &; Geophysics. 2012. 53, N 5. 5.23-5.28.
  16. Lacki B.C., Beck R. The equipartition magnetic field formula in starburst galaxies: accounting for pionic secondaries and strong energy losses // Mon. Not. R. Astron. Soc. 2013. 430, N 4. 3171-3186.
  17. Matsumoto M., Nishimura T. Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator // ACM Trans. on Modelling and Computer Simulation. 1998. 8, N 1. 3-30.
  18. Зельдович Я.Б., Молчанов С.А., Рузмайкин А.А., Соколов Д.Д. Перемежаемость в случайной среде // Успехи физических наук. 1987. 152, Вып. 1. 3-32.
  19. Илларионов Е.А., Соколов Д.Д., Тутубалин В.Н. Стационарное распределение произведения матриц со случайными коэффициентами // Вычислительные методы и программирование. 2012. 13. 218-225.