Deformation of tomograms for curvilinear tomography problems




inverse problems, Radon transform, fan-beam tomography, curvilinear tomography, numerical simulation


Earlier in our works, it was proposed to apply the method of a fan-beam mapping into a set of parallel lines in the problems of fan-beam tomography. This was achieved by special deformation of the reconstracted tomogram at the stage of back projection of the measured and filtered projections, followed by the operation of reverse deformation. The deformation of the tomogram for each direction of observation will be different, but the one-to-one nature of these deformations allows you to return to the original coordinate system. In this paper, the method is generalized to a family of plane curvilinear trajectories that allow one-to-one transitions to parallel rays. For each back projection, the image is modulated by a known function following from the path differential of the given trajectory. The results of generalization of the FBP algorithm widely used in two-dimensional tomography methods are demonstrated by examples of parabolic, sinusoidal and fan-beam ray trajectories.


Author Biography

Valery V. Pickalov

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS,
• Associate Professor, Principal Scientist


  1. F. Natterer, The Mathematics of Computerized Tomography (Teubner, Stuttgart, 1986; Mir, Moscow, 1990).
  2. S. Helgason, The Radon Transform (Birkhäuser, Boston, 1980; Mir, Moscow, 1983).
  3. S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, New York, 1983).
  4. G. Ambartsoumian and P. Kuchment, “A Range Description for the Planar Circular Radon Transform,” SIAM J. Math. Anal. 38 (2), 681-692 (2006).
    doi 10.1137/050637492
  5. M. Eller, P. Hoskins, and L. Kunyansky, “Microlocally Accurate Solution of the Inverse Source Problem of Thermoacoustic Tomography,” Inverse Probl. 36 (8) (2020).
    doi 10.1088/1361-6420/ab9c46
  6. V. V. Nikitin, F. Andersson, M. Carlsson, and A. A. Duchkov, “Fast Hyperbolic Radon Transform Represented as Convolutions in Log-Polar Coordinates,” Comput. Geosci. 105, 21-33 (2017).
    doi 10.1016/j.cageo.2017.04.013
  7. J. Tasinkevych and I. Trots, “Circular Radon Transform Inversion Technique in Synthetic Aperture Ultrasound Imaging: An Ultrasound Phantom Evaluation,” Arch. Acoust. 39 (4), 569-582 (2014).
    doi 10.2478/aoa-2014-0061
  8. S. Moon and J. Heo, “Inversion of the Elliptical Radon Transform Arising in Migration Imaging Using the Regular Radon Transform,” J. Math. Anal. Appl. 436 (1), 138-148 (2016).
    doi 10.1016/j.jmaa.2015.11.043
  9. S. Moon, “Inversion of the Seismic Parabolic Radon Transform and the Seismic Hyperbolic Radon Transform,” Inverse Probl. Sci. Eng. 24 (2), 317-327 (2016).
    doi 10.1080/17415977.2015.1025071
  10. F. Monard, “Functional Relations, Sharp Mapping Properties, and Regularization of the X-Ray Transform on Disks of Constant Curvature,” SIAM J. Math. Anal. 52 (6), 5675-5702 (2020).
    doi 10.1137/20M1311508
  11. C. Grathwohl, P. Kunstmann, E. T. Quinto, and A. Rieder, “Microlocal Analysis of Imaging Operators for Effective Common Offset Seismic Reconstruction,” Inverse Probl. 34 (11) (2018).
    doi 10.1088/1361-6420/aadc2a
  12. C. Tarpau, J. Cebeiro, M. K. Nguyen, et al., “Analytic Inversion of a Radon Transform on Double Circular Arcs with Applications in Compton Scattering Tomography,” IEEE Trans. Comput. Imaging 6, 958-967 (2020).
    doi 10.1109/TCI.2020.2999672
  13. V. V. Pickalov, D. I. Kazantzev, and V. P. Golubyatnikov, “The Central Slice Theorem Generalization for a Fan-Beam Tomography,” Vychisl. Metody Programm. 7, № 2. 180-184 (2006).
  14. V. V. Pickalov and D. I. Kazantzev, “Iterative Restoration of Radon-Space Sinogram Disturbances for the Steganography Problem,” Vychisl. Metody Programm. 9, № 1. 1-9 (2008).
  15. D. Kazantsev and V. Pickalov, “New Iterative Reconstruction Methods for Fan-Beam Tomography,” Inverse Probl. Sci. Eng. 26 (6), 773-791 (2017).
    doi 10.1080/17415977.2017.1340946
  16. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
  17. B. K. Vainshtein, “Three-Dimensional Electron Microscopy of Biological Macromolecules,” Usp. Fiz. Nauk 109 (3), 455-497 (1973) [Sov. Phys. Usp. 16 (2), 185-206 (1973)].
    doi 10.1070/PU1973v016n02ABEH005164
  18. E. I. Vainberg, I. A. Kazak, and M. L. Faingoiz, “X-Ray Computerized Back Projection Tomography with Filtration by Double Differentiation. Procedure and Information Features,” Defektoskopiya, No. 2, 31-39 (1985) [Sov. J. Nondestruct. Test. 21 (2), 106-113 (1985)].
  19. A. Faridani, D. V. Finch, E. L. Ritman, and K. T. Smith, “Local Tomography II”, SIAM J. Appl. Math. 57 (4), 1095-1127 (1997).
    doi 10.1137/S0036139995286357
  20. I. Yu. Kulakov, D. A. Vologin, and V. V. Pickalov, “A Multigrid Algorithm for the Fan-Beam ROI-Tomography of Contrast Objects,” Vychisl. Metody Programm. 14 (4), 543-548 (2013).
  21. E. Yu. Derevtsov and V. V. Pickalov, “Reconstruction of Vector Fields and Their Singularities from Ray Transforms,” Sib. Zh. Vych. Mat. 14 (1), 29-46 (2011) [Numer. Anal. Appl. 4 (1), 21-35 (2011).]
    doi 10.1134/S1995423911010034
  22. J. W. Webber, E. T. Quinto, and E. L. Miller, “A Joint Reconstruction and Lambda Tomography Regularization Technique for Energy-Resolved X-Ray Imaging,” Inverse Probl. 36 (7) (2020).
    doi 10.1088/1361-6420/ab8f82
  23. V. V. Pickalov, “Tomography Problems for Media with Low Refraction,” AIP Conf. Proc. 2288 (1) (2020).
    doi 10.1063/5.0028741
  24. V. V. Pickalov, “Approximate Filtered Back-Projection Algorithm for Plane Curves in Tomography Problems,” J. Phys. Conf. Ser. 1715 (1) (2021).
    doi 10.1088/1742-6596/1715/1/012039



How to Cite

Пикалов В.В. Deformation of Tomograms for Curvilinear Tomography Problems // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2022. 23. 1-12. doi 10.26089/NumMet.v23r101



Methods and algorithms of computational mathematics and their applications