A special variant of the subdomain method for solving the Fredholm integral equations of the second kind

Authors

  • S.A. Solovyeva Kazan Federal University - Naberezhnye Chelny Institute

DOI:

https://doi.org/10.26089/NumMet.v19r322

Keywords:

Fredholm integral equations of the second kind, space of smooth functions, approximate solutions, subdomain method, Kantorovich polynomials

Abstract

A special variant of the subdomain method based on Kantorovich polynomials is proposed and theoretically substantiated for the approximate solution of Fredholm integral equations of the second kind in the space of smooth functions.

Author Biography

S.A. Solovyeva

References

  1. A. B. Samokhin and A. S. Samokhina, “3D Fredholm Integral Equations for Scattering by Dielectric Structures,” Differ. Uravn. 52 (9), 1221-1230 (2016) [Differ. Equ. 52 (9), 1178-1187 (2016)].
  2. D. A. Pozharskii, “A Strip Cut in a Composite Elastic Wedge,” Prikl. Mat. Mekh. 80 (4), 489-495 (2016) [J. Appl. Math. Mech. 80 (4), 345-350 (2016)].
  3. P. Malits, “The Static Reissner-Sagoci Problem for an Inhomogeneous Finite Cylinder,” Quart. J. Mech. Appl. Math. 70 (4), 519-552 (2017).
  4. I. H. Tayyar and B. Çolak, “Plane Wave Scattering by a Dielectric Loaded Slit in a Thick Impedance Screen,” J. Electromagnet. Waves Appl. 31 (6), 604-626 (2017).
  5. Y. Song, H. Hu, and J. W. Rudnicki, “Dynamic Stress Intensity Factor (Mode I) of a Permeable Penny-Shaped Crack in a Fluid-Saturated Poroelastic Solid,” Int. J. Solids Struct. 110-111}, 127-136 (2017).
  6. B. G. Gabdulkhaev, “A Note on the General Theory of Approximate Methods in Analysis,” Uchen. Zap. Kazan. Univ. 125 (2), 18-31 (1965).
  7. N. S. Gabbasov and I. P. Kasakina, “On the Numerical Solution of Integral Equations of the Second Kind in the Class of Smooth Functions,” in Proc. All-Russian Sci. Conf. on Mathematical Modeling and Boundary Value Problems, Samara, Russia, May 26-28, 2004 (Samara State Tech. Univ., Samara, 2004), Part 3, pp. 48-51.
  8. S. A. Solov’eva, “On the Solution of Fredholm Integral Equations of the Second Kind,” Nauch.-Tekh. Vestn. Povolzh’ya 1, 37-40 (2014).
  9. S. A. Solov’eva, “A Special Version of the Moments Method for Integral Fredholm Equations of the Second Kind,” Nauka i Obrazovanie: Nauch. Izd. MGTU im. N.E. Baumana 8, 239-251 (2015).
  10. S. A. Solov’eva, “A Variant of the Collocation Method for the Fredholm Integral Equations of the Second Kind,” Vychisl. Metody Programm. 18, 187-191 (2017).
  11. B. G. Gabdulkhaev, Optimal Approximations of Solutions of Linear Problems (Kazan Gos. Univ., Kazan, 1980) [in Russian].
  12. N. S. Gabbasov, “The Collocation Method for Solving Integral Equations of the First Kind in the Class of Generalized Functions,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 12-20 (1993) [Russ. Math. 37 (2), 10-18 (1993)].
  13. I. V. Uzhdavinis, “Convergence of a Subdomain-Type Method,” Differ. Uravn. Primen., No. 1, 73-83 (1971).
  14. N. S. Gabbasov, Methods for Solving the Fredholm Integral Equations in the Space of Distributions (Kazan Gos. Univ., Kazan, 2006) [in Russian].
  15. N. S. Gabbasov and S. A. Solov’eva, “Special Version of the Subdomain Method for a Class of Integral Equations of the Third Kind in the Space of Distributions,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 7, 49-55 (2014) [Russ. Math. 58 (7), 42-47 (2014)].

Published

26-12-2018

How to Cite

Соловьева С. A Special Variant of the Subdomain Method for Solving the Fredholm Integral Equations of the Second Kind // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2018. 19. 230-234. doi 10.26089/NumMet.v19r322

Issue

Section

Section 1. Numerical methods and applications