Upwind and standard leapfrog difference schemes


  • A.I. Sukhinov
  • A.E. Chistyakov
  • E.A. Protsenko


transfer problem
Standard Leapfrog scheme
Upwind Leapfrog scheme
linear weighted combination
increasing of accuracy


In order to solve the transfer problem, it is proposed to use the scheme based on a linear combination of the Upwind and Standard Leapfrog difference schemes with weighting coefficients obtained by minimizing the approximation error. The estimate of the approximation error of the proposed difference scheme shows that, for small Courant numbers, this scheme whose approximation error is O(ch2), where the constant c is significantly less than unity, is preferable to use than the original Upwind and Standard Leapfrog schemes whose approximation errors are O(h2). The numerical results for the transfer problem based on the proposed scheme are compared with the results obtained using the following schemes: (i) the scheme based on a linear combination of the Standard Leapfrog scheme and the Upwind Leapfrog scheme and (ii) the two-parameter difference scheme of the third order of accuracy.





Section 1. Numerical methods and applications

Author Biographies

A.I. Sukhinov

A.E. Chistyakov

E.A. Protsenko

A.P. Chekhov Taganrog Institute
• Associate Professor


  1. V. M. Goloviznin and A. A. Samarskii, “Finite Difference Approximation of Convective Transport Equation with Space Splitting Time Derivative,” Mat. Model. 10 (1), 86-100 (1998).
  2. A. I. Sukhinov, Yu. V. Belova, and A. E. Chistyakov, “Solution of the Matter Transport Problem at High Peclet Numbers,” Vychisl. Metody Programm. 18, 371-380 (2017).
  3. V. A. Gushchin, “Family of Quasi-Monotonic Finite-Difference Schemes of the Second-Order of Approximation,” Mat. Model. 28 (2), 6-18 (2016) [Math. Models Comput. Simul. 8 (5), 487-496 (2016)].
  4. O. M. Belotserkovskii, V. A. Gushchin, and V. N. Kon’shin, “The Splitting Method for Investigating Flows of a Stratified Liquid with a Free Surface,” Zh. Vychisl. Mat. Mat. Fiz. 27 (4), 594-609 (1987) [USSR Comput. Math. Math. Phys. 27 (2), 181-191 (1987)].
  5. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Convection-Diffusion Problems (Editorial, Moscow, 1999) [in Russian].
  6. M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Application of the RKDG Method for Gas Dynamics Problems,” Mat. Model. 26 (1), 17-32 (2014) [Math. Models Comput. Simul. 6 (4), 397-407 (2014)].
  7. V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkin, New CFD Algorithms for Multiprocessor Computer Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].
  8. V. Yu. Glotov, V. M. Goloviznin, S. A. Karabasov, and A. P. Markesteijn, “New Two-Level Leapfrog Scheme for Modeling the Stochastic Landau-Lifshitz Equations,” Zh. Vychisl. Mat. Mat. Fiz. 54 (2), 298-317 (2014) [Comput. Math. Math. Phys. 54 (2), 315-334 (2014)].
  9. V. Yu. Glotov, A Mathematical Model of Free Turbulence Based on Maximum Principle , Candidate’s Dissertation in Mathematics and Physics (Keldysh Institute of Applied Mathematics, Moscow, 2014).
  10. A. A. Samarskii, “Regularization of Difference Schemes,” Zh. Vychisl. Mat. Mat. Fiz. 7 (1), 62-93 (1967) [USSR Comput. Math. Math. Phys. 7 (1), 79-120 (1967)].
  11. A. A. Samarskii, “Classes of Stable Schemes,” Zh. Vychisl. Mat. Mat. Fiz. 7 (5), 1096-1133 (1967) [USSR Comput. Math. Math. Phys. 7 (5), 171-223 (1967)].
  12. R. P. Fedorenko, “The Application of Difference Schemes of High Accuracy to the Numerical Solution of Hyperbolic Equations,” Zh. Vychisl. Mat. Mat. Fiz. 2 (6), 1122-1128 (1962) [USSR Comput. Math. Math. Phys. 2 (6), 1355-1365 (1963)].
  13. A. I. Sukhinov, A. E. Chistyakov, E. F. Timofeeva, and A. V. Shishenya, “Mathematical Model for Calculating Coastal Wave Processes,” Mat. Model. 24 (8), 32-44 (2012) [Math. Models Comput. Simul. 5 (2), 122-129 (2013)].
  14. A. I. Sukhinov, A. E. Chistyakov, and M. V. Iakobovskii, “Accuracy of the Numerical Solution of the Equations of Diffusion-Convection Using the Difference Schemes of Second and Fourth Order Approximation Error,” Vestn. Yuzhn. Ural. Gos. Univ. Ser. Vychisl. Mat. Inf. 5 (1), 47-62 (2016).