Numerical simulation of gas dynamic and physical-chemical processes in hypersonic flows past bodies
Authors
-
K.N. Volkov
-
V.N. Emelyanov
-
A.G. Karpenko
Keywords:
aerodynamics
hypersonic flow
computational fluid dynamics
real gas
finite volume method
shock wave
dissociation
Abstract
Numerical simulation of gas dynamic and physical-chemical processes in hypersonic flows past bodies of various shapes is considered. The mathematical model includes the gas dynamics equations of real gases and the equations of chemical kinetics describing equilibrium processes in high-temperature air. The finite volume method and various finite difference schemes for the discretization of convective fluxes are used to discretize the governing equations. The capabilities of the numerical procedure are demonstrated by the solution of a number of problems in physical-chemical gas dynamics. The calculations are performed using general-purpose graphics processor units. The computational time achieved with the use of various finite difference schemes and the approaches to describe the properties of high-temperature air are discussed.
Section
Section 1. Numerical methods and applications
References
- J. D. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Press, Reston, 2006).
- S. T. Surzhikov, Numerical Study of Aerothermodynamics of Hypersonic Flow over Blunt Bodies by the Example of Experimental Data Analysis (Inst. for Problems in Mechanics, Moscow, 2011) [in Russian].
- Yu. P. Golovachev, Numerical Simulation of Viscous Gas Flows in Shock Layers (Nauka, Moscow, 1996) [in Russian].
- A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; CRC Press, Boca Raton, 2001).
- S. T. Surzhikov, “A Numerical Method for Hypersonic Flow over a Sphere Using the AUSM Finite-Difference Schemes,” Vestn. Bauman Mosk. Tekh. Univ., Ser. 3: Mashinostroenie, No. 3, 7-33 (2005).
- J. J. Quirk, “A Contribution to the Great Riemann Solver Debate,” Int. J. Numer. Methods Fluids 18 (6), 555-574 (1994).
- G. A. Tarnavsky and A. V. Aliev, “Specific Features of High-Speed Flight Aerodynamics: Computer Simulation of Hypersonic Flow around the Head of an Object,” Vychisl. Metody Programm. 9, 371-394 (2008).
- R. W. MacCormack, “Carbuncle Computational Fluid Dynamics Problem for Blunt-Body Flows,” J. Aerospace Inf. Sys. 10 (5), 229-239 (2013).
- A. S. Yur’ev, S. Yu. Pirogov, and E. V. Ryzhov, Control of Flow over Bodies Using the Laser Energy Input into High-Speed Gas Flow (Professional, St. Petersburg, 2006) [in Russian].
- V. Kulkarni, G. M. Hegde, G. Jagadeesh, et al., “Aerodynamic Drag Reduction by Heat Addition into the Shock Layer for a Large Angle Blunt Cone in Hypersonic Flow,” Phys. Fluids 20 (2008).
doi 10.1063/1.2944982
- V. A. Lashkov, A. G. Karpenko, R. S. Khoronzhuk, and I. Ch. Mashek, “Effect of Mach Number on the Efficiency of Microwave Energy Deposition in Supersonic Flow,” Phys. Plasmas 23 (2016).
doi 10.1063/1.4949524
- V. E. Borisov, A. E. Lutsky, A. V. Severin, and Ya. V. Khankhasaeva, Active Impact on the Flow around Hypersonic Flying Vehicles , Preprint No. 137 (Keldysh Institute of Applied Mathematics, Moscow, 2016).
- K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. S. Kozelkov, A. G. Karpenko, and I. V. Teterina, Acceleration of Gasdynamic Calculations on Unstructured Grids (Fizmatlit, Moscow, 2013) [in Russian].
- M. W. Chase, J. L. Curnutt, R. A. McDonald, and A. N. Syverud, “JANAF Thermochemical Tables,” J. Phys. Chem. Ref. Data 7 (3), 793-940 (1978).
- V. P. Glushko (Ed.), Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1978) [in Russian].
- A. S. Predvoditelev, E. V. Stupochenko, E. V. Samuilov, I. P. Stakhanov, A. S. Pleshanov, and I. B. Rozhdestvenskii, Tables of Thermodynamic Functions of Air for the Temperature Range 6000-12000° K and Pressure Range 0.001-1000 atm (Izd. Akad. Nauk SSSR, Moscow, 1957; Infosearch, London, 1958).
- A. S. Predvoditelev, E. V. Stupochenko, A. S. Pleshanov, et al., Tables of Thermodynamic Functions of Air for the Temperature Range 12000-20000° K and Pressure Range 0.001-1000 atm (Izd. Akad. Nauk SSSR, Moscow, 1959) [in Russian].
- A. S. Predvoditelev, E. V. Stupochenko, E. V. Samuilov, et al., Tables of Thermodynamic Functions of Air for the Temperature Range 200-6000° K and Pressure Range 0.00001-100 atm (Izd. Akad. Nauk SSSR, Moscow, 1962) [in Russian].
- V. A. Levin, V. G. Gromov, and N. E. Afonina, “Numerical Analysis of the Effect of Local Energy Supply on the Aerodynamic Drag and Heat Transfer of a Spherically Blunted Body in a Supersonic Air Flow,” Zh. Prikl. Mekh. Tekh. Fiz. 41 (5), 171-179 (2000) [J. Appl. Mech. Tech. Phys. 41 (5), 915-922 (2000)].
- A. N. Kraiko, “Analytic Representation of Thermodynamic Functions of Air,” Inzh. Zh. 4 (3), 548-550 (1964).
- A. N. Kraiko and V. E. Makarov, “Explicit Analytic Formulas Defining the Equilibrium Composition and Thermodynamic Functions of Air for Temperatures from 200 to 20000 K,” Teplofiz. Vys. Temp. 34 (2), 208-219 (1996) [High Temp. 34 (2), 202-213 (1996)].
- N. A. Brykov, K. N. Volkov, V. N. Emelyanov, and I. V. Teterina, “Flows of Ideal and Real Gases in Channels of Variable Cross Section with Unsteady Localized Energy Supply,” Vychisl. Metody Programm. 18, 20-40 (2017).
- E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 1999).
- V. V. Rusanov, “The Calculation of the Interaction of Non-Stationary Shock Waves with Barriers,” Zh. Vychisl. Mat. Mat. Fiz. 1 (2), 267-279 (1961) [USSR Comput. Math. Math. Phys. 1 (2), 304-320 (1962)].
- T. J. Barth and D. C. Jespersen, “The Design and Application of Upwind Schemes on Unstructured Meshes,” AIAA Paper No. 89-0366 (1989).
- V. N. Emelyanov, A. G. Karpenko, A. S. Kozelkov, et al., “Analysis of Impact of General-Purpose Graphics Processor Units in Supersonic Flow Modeling,” Acta Astronaut. 135, 198-207 (2017).
- V. Emelyanov, A. Karpenko, and K. Volkov, “Development and Acceleration of Unstructured Mesh-Based CFD Solver,” Progress in Flight Physics 9, 387-408 (2017).
- R. K. Lobb, “Experimental Measurement of Shock Detachment Distance on Spheres Fired in Air at Hypervelocities,” in The High Temperature Aspects of Hypersonic Flow (Pergamon, Oxford, 1964), pp. 519-527.
- S. V. Zhluktov, G. D. Smekhov, and G. A. Tirskii, “Rotation-Vibration-Dissociation Interaction in a Multicomponent Nonequilibrium Viscous Shock Layer,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 166-180 (1994) [Fluid Dyn. 29 (6), 876-887 (1994)].
- T. J. McIntyre, A. I. Bishop, H. Rubinsztein-Dunlop, and P. A. Gnoffo, “Comparison of Experimental and Numerical Studies of Ionizing Flow over a Cylinder,” AIAA J. 41 (11), 2157-2161 (2003).
- L. D. Huebner, K. E. Rock, E. G. Ruf, et al., “Hyper-X Flight Engine Ground Testing for Flight Risk Reduction,” J. Spacecr. Rockets 38 (6), 844-852 (2001).
- D. E. Reubush, L. T. Nguyen, and V. L. Rausch, “Review of X-43A Return to Flight Activities and Current Status,” AIAA Paper No. 2003-7085 (2003).
- M. Mirmirani, C. Wu, A. Clark, et al., “Airbreathing Hypersonic Flight Vehicle Modeling and Control, Review, Challenges, and a CFD-Based Example,” in Proc. Workshop on Modeling and Control of Complex Systems, Ayia Napa, Cyprus, June 30-July 1, 2005 , 15 pp.